Showing posts with label game. Show all posts
Showing posts with label game. Show all posts

Tuesday, April 1, 2025

Vibe Coding, final word

I couldn't leave it alone. This AI was going to write some Lisp code if I had to force it. This isn't “vibing” anymore. We're going to be pecise, exact, and complete in our instructions, and we're going to check the results.

Again, I'm taking on a Minesweeper clone as the problem. All the code was to be written in a single file using a single package. The AI simply didn't understand the problem of forward references to symbols in other packages. Perhaps a game loop is beyond the ability of the AI. I wrote a basic game loop that initializes all the required libraries in correct order with unwind-protects to clean up in reverse order. I wrote a main function that creates a window and a renderer to draw on it, and a game loop that polls for events and handles keypresses and the quit event. This is a basic black window that has no behavior beyond the ability to quit. There should be no need for the AI to modify this code.

The AI used the GPT-4o model. Instructions were given in precise, imperative English. For example,

“Each cell on the board is in one of these states: hidden, flagging, flagged, unflagging, exposing, exposed Cells start out in hidden state. When a cell is hidden, it renders as a blank square. When a cell is hidden and the mouse is over the cell and the right button is down, the cell enteres the flagging state. When a cell is flagging and the mouse is over the cell and the right button is up, the cell enters the flagged mode. When a cell is flagged and the mouse is over the cell and the right button is down, the cell enters unflagging. When the cell is unflagging, the mouse is over the cell and and right button is up, the cell enters hidden. Cells that are flagging or flagged display as the flag texture. Cells that are hidden or unflagging display as the blank texture.”

This is programming, not vibing. There is always room for misunderstanding, but I spelled out the details of part of the state transitions that I wanted the AI to implement. In particular, notice that when flagging a cell, there are hidden states beyond the flagged and unflagged states. These are necessary to make the effect of flagging and unflagging be edge triggered. I didn't trust the AI to know about this, so I spelled it out.

Sometimes I could write simple directions, such as:

“When rendering a cell, if it is under the mouse, highlight the cell with a red border.”

Or:

“When the cell is in the exposing state, it should display as a blank, depressed cell.”

But then again,

“When the mouse is over a cell, if the cell is in hidden state and left mouse button is down, the cell enters the exposing state. If a cell is in exposing state and the mouse is not over the cell, the cell reverts to hidden state. If a cell is in exposing state, and the mouse is over the cell, and the left mouse button is raised, the cell enters the exposed state.”

The AI did a surprisingly good job at handling the parenthesis. There was one function that it kept adding a stray parenthesis to. I went back more than once to delete that extra parenthesis when the reader barfed.

At one point, the AI accidentally removed the abiity to place a flag on a cell. I asked it to restore that ability, but I didn't give instructions in as great detail as I did before. It added transitions to and from the flagged state, but it didn't add the intermediate flagging and unflagging states as I had explicitly directed it to before. As a result, flagging ended up being non-deterministic, with the flag being toggled on and off every 16 ms. I had to go back and add the intermediate states by hand again to restore the determinism.

After a few hours of this, I had a working Minesweeper clone. Let's look at the generated code.

;; -*- mode: lisp; package: "VIBE" -*-

(in-package "VIBE")

;; Define constants for magic numbers
(defparameter *tile-size* 32) ;; Size of each tile in pixels
(defparameter *game-width* 25) ;; Number of columns
(defparameter *game-height* 15) ;; Number of rows
(defparameter *frame-delay* 16) ;; Delay between frames in milliseconds

;; Define cell states
(defconstant +hidden+ 'hidden)
(defconstant +flagging+ 'flagging)
(defconstant +flagged+ 'flagged)
(defconstant +unflagging+ 'unflagging)
(defconstant +exposing+ 'exposing)
(defconstant +exposed+ 'exposed)

;; Define game states
(defconstant +playing+ 'playing)
(defconstant +won+ 'won)
(defconstant +lost+ 'lost)

It is a little odd to define the state constants as symbols. This adds a pointless extra level of symbolic indirection. I would have used keywords instead of symbols.

;; Global game state
(defparameter *game-state* +playing+)

;; The game board
(defparameter *board* nil)

;; The game board content (e.g., :mine or a number)
(defparameter *board-content* nil)

(defun initialize-board ()
  "Initialize the game board with all cells in the hidden state and place mines."
  ;; Initialize the board state
  (setf *board* (make-array (list *game-height* *game-width*)
                            :initial-element +hidden+))
  ;; Initialize the board content
  (setf *board-content* (make-array (list *game-height* *game-width*)
                                    :initial-element 0))
  ;; Place 50 mines randomly
  (loop repeat 50
        do (let ((row (random *game-height*))
                 (col (random *game-width*)))
             ;; Ensure no duplicate mines
             (unless (eql (aref *board-content* row col) :mine)
               (setf (aref *board-content* row col) :mine)
               ;; Update adjacent cells
               (update-adjacent-cells row col)))))

(defun update-adjacent-cells (row col)
  "Increment the mine count for all adjacent cells."
  (loop for r from (max 0 (1- row)) to (min (1+ row) (1- *game-height*))
        do (loop for c from (max 0 (1- col)) to (min (1+ col) (1- *game-width*))
                 do (unless (eql (aref *board-content* r c) :mine)
                      (incf (aref *board-content* r c))))))

You can tell that I didn't write this code. I hate loop.

The textures are loaded from PNG files just before beginning the game loop. The AI decided to maintain them as four separate values that are passed around to the functions that need them. This will get out of hand quickly. A table of resources would be better.

(defun render-frame (renderer blank-texture flag-texture mine-texture digit-textures)
  (sdl2:set-render-draw-color renderer 0 0 0 0)
  (sdl2:render-clear renderer)
  ;; Render game state
  (loop for row from 0 below *game-height*
        do (loop for col from 0 below *game-width*
                 do (render-tile renderer row col blank-texture flag-texture mine-texture digit-textures))))

(defun render-tile (renderer row col blank-texture flag-texture mine-texture digit-textures)
  "Render a single tile based on its state and highlight it if under the mouse."
  (let ((state (aref *board* row col))
        (content (aref *board-content* row col)) ;; Content of the cell (e.g., :mine or a number)
        (dest-rect (sdl2:make-rect (* col *tile-size*) (* row *tile-size*) *tile-size* *tile-size*)))
    ;; Render the tile based on its state
    (cond
      ;; Hidden or unflagging state: render blank texture
      ((or (eql state +hidden+) (eql state +unflagging+))
       (sdl2:render-copy renderer blank-texture :dest-rect dest-rect))
      ;; Flagging or flagged state: render flag texture
      ((or (eql state +flagging+) (eql state +flagged+))
       (sdl2:render-copy renderer flag-texture :dest-rect dest-rect))
      ;; Exposing state: render blank texture with a depressed effect
      ((eql state +exposing+)
       (sdl2:render-copy renderer blank-texture :dest-rect dest-rect)
       (sdl2:set-render-draw-color renderer 50 50 50 100) ;; Semi-transparent dark overlay
       (sdl2:render-fill-rect renderer dest-rect))
      ;; Exposed state: render mine or digit
      ((eql state +exposed+)
       (cond
         ;; If the cell contains a mine, render the mine texture
         ((eql content :mine)
          (sdl2:render-copy renderer mine-texture :dest-rect dest-rect))
         ;; If the cell contains a digit (positive number), render the corresponding digit texture
         ((and (integerp content) (> content 0))
          (let ((digit-texture (gethash content digit-textures)))
            (when digit-texture
              (sdl2:render-copy renderer digit-texture :dest-rect dest-rect))))
         ;; Otherwise, render a default exposed tile (e.g., light gray)
         (t
          (sdl2:set-render-draw-color renderer 200 200 200 255) ;; Light gray for exposed
          (sdl2:render-fill-rect renderer dest-rect)))))
    ;; Highlight the tile with a red border if it is under the mouse
    (multiple-value-bind (mouse-x mouse-y _) (sdl2:mouse-state)
      (declare (ignore _))
      (let ((mouse-row (floor (/ mouse-y *tile-size*)))
            (mouse-col (floor (/ mouse-x *tile-size*))))
        (when (and (= row mouse-row) (= col mouse-col))
          (sdl2:set-render-draw-color renderer 255 0 0 255) ;; Red color
          (sdl2:render-draw-rect renderer dest-rect)
          (sdl2:set-render-draw-color renderer 0 0 0 255)))))) ;; Reset color to black

Each time we go around the game loop, we update the state the cell under the mouse. The AI decided to pass the state input as spread arguments to the update function.

(defun update-cell-state (row col mouse-over left-button-down left-button-up right-button-down right-button-up)
  "Update the state of a cell based on mouse input."
  (let ((state (aref *board* row col)))
    (cond
      ;; If the cell is hidden and the left mouse button is down, it enters the exposing state
      ((and (eql state +hidden+) mouse-over left-button-down)
       (setf (aref *board* row col) +exposing+))

      ;; If the cell is exposing and the mouse is not over it, it reverts to hidden
      ((and (eql state +exposing+) (not mouse-over))
       (setf (aref *board* row col) +hidden+))

      ;; If the cell is exposing, the mouse is over it, and the left mouse button is raised, it enters the exposed state
      ((and (eql state +exposing+) mouse-over left-button-up)
       (setf (aref *board* row col) +exposed+)
       ;; If the cell contains a mine, the game is lost and all mines are exposed
       (when (eql (aref *board-content* row col) :mine)
         (setf *game-state* +lost+)
         (expose-all-mines))
       ;; If the cell has zero neighboring mines, recursively expose neighbors
       (when (and (integerp (aref *board-content* row col))
                  (= (aref *board-content* row col) 0))
         (expose-neighbors row col)))

      ;; If the cell is hidden and the right mouse button is down, it enters the flagging state
      ((and (eql state +hidden+) mouse-over right-button-down)
       (setf (aref *board* row col) +flagging+))

      ;; If the cell is flagging and the right mouse button is up, it enters the flagged state
      ((and (eql state +flagging+) mouse-over right-button-up)
       (setf (aref *board* row col) +flagged+))

      ;; If the cell is flagged and the right mouse button is down, it removes the flag
      ((and (eql state +flagged+) mouse-over right-button-down)
       (setf (aref *board* row col) +unflagging+))

      ((and (eql state +unflagging+) mouse-over right-button-up)
       (setf (aref *board* row col) +hidden+)))))

(defun poll-mouse-and-update ()
  "Poll the mouse position and button states, and update the board accordingly."
  (when (eql *game-state* +playing+) ;; Only process mouse input if the game is playing
    (multiple-value-bind (x y buttons) (sdl2:mouse-state)
      (let ((row (floor (/ y *tile-size*)))
            (col (floor (/ x *tile-size*)))
            (left-button-down (logbitp 0 buttons))  ;; SDL_BUTTON_LEFT is bit 0
            (right-button-down (logbitp 2 buttons))) ;; SDL_BUTTON_RIGHT is bit 2
        (when (and (>= row 0) (< row *game-height*)
                   (>= col 0) (< col *game-width*))
          ;; Update the cell state based on mouse input
          (update-cell-state row col
                             t ;; mouse-over is true for the current cell
                             left-button-down
                             (not left-button-down)
                             right-button-down
                             (not right-button-down)))))))

This illustrates that while the lights appear to be on, no one is at home. The mouse-over variable is always true, there is no need for it to exist at all. There is no need to pass both left-button-down and its complement. Same with right-button-down.

I did allow the AI to modify game-loop, but the modifications were subject to careful scrutiny to make sure that the game would continue to run. In particular, one time it wanted to add handlers for mouse events. I told it no, and that it could poll the mouse state as necessary instead.

(defun game-loop (window renderer blank-texture flag-texture mine-texture digit-textures game-over-texture)
  "Main game loop."
  (declare (ignore window))
  ;; Main game loop
  (sdl2:with-event-loop (:method :poll)
    (:idle ()
           ;; Clear the screen
           (sdl2:set-render-draw-color renderer 0 0 0 255) ;; Black background
           (sdl2:render-clear renderer)

           ;; Poll mouse and update game state
           (poll-mouse-and-update)

           ;; Render the game frame
           (render-frame renderer blank-texture flag-texture mine-texture digit-textures)

           ;; Render the "Game Over" overlay if the game is lost
           (when (eql *game-state* +lost+)
             (let ((screen-width (* *tile-size* *game-width*))
                   (screen-height (* *tile-size* *game-height*)))
               ;; Set blend mode and alpha for transparency
               (sdl2:set-texture-blend-mode game-over-texture :blend)
               (sdl2:set-texture-alpha-mod game-over-texture 192) ;; 75% transparency
               ;; Render the texture as a full-screen overlay
               (let ((dest-rect (sdl2:make-rect 0 0 screen-width screen-height)))
                 (sdl2:render-copy renderer game-over-texture :dest-rect dest-rect))))

           ;; Present the rendered frame
           (sdl2:render-present renderer)

           ;; Delay for the next frame
           (sdl2:delay *frame-delay*))
    (:keydown (:keysym keysym)
              (cond
                ;; Reset the game when the 'o' key is pressed
                ((eql (sdl2:scancode keysym) :scancode-o)
                 (reset-game))
                ;; Quit the game when the 'x' key is pressed
                ((eql (sdl2:scancode keysym) :scancode-x)
                 (sdl2:push-quit-event))
                ;; Lose the game and expose all mines when the 'p' key is pressed
                ((eql (sdl2:scancode keysym) :scancode-p)
                 (progn
                   (setf *game-state* +lost+)
                   (expose-all-mines)))))
    (:quit () t)))

Notice that in this game loop, we're not accounting for the time it takes to update the game state and render the frame. If this game really tried to animate anything, the animation would be jittery. A better game loop would track real time and refresh accordingly.

For a simple game such as this, it makes sense to load the all the bitmaps into memory at the get-go. For a more complicated game with many levels, you might not be able to fit them all in memory.

Passing the surfaces around as arguments is not going to work when you have a lot of them.

(defun initialize ()
  "Initialize the game, load textures, and create the game board."
  (initialize-board) ;; Initialize the game board
  (let ((blank-surface nil)
        (flag-surface nil)
        (mine-surface nil)
        (game-over-surface nil)
        (digit-surfaces (make-hash-table)))
    (unwind-protect
         (progn
           ;; Load PNG surfaces
           (setq blank-surface (sdl2-image:load-image
                                (asdf:system-relative-pathname "vibe" "textures/blank.png")))
           (setq flag-surface (sdl2-image:load-image
                               (asdf:system-relative-pathname "vibe" "textures/flag.png")))
           (setq mine-surface (sdl2-image:load-image
                               (asdf:system-relative-pathname "vibe" "textures/mine.png")))
           ;; Load digit textures (e.g., "1.png", "2.png", etc.)
           (loop for i from 1 to 8
                 do (setf (gethash i digit-surfaces)
                          (sdl2-image:load-image
                           (asdf:system-relative-pathname "vibe" (format nil "textures/~a.png" i)))))
           ;; Create the "GAME OVER" surface
           (setq game-over-surface (create-game-over-surface))

           ;; Create the window and renderer
           (sdl2:with-window (window
                              :title "Vibe"
                              :x 0 :y 0
                              :w (* *tile-size* *game-width*)
                              :h (* *tile-size* *game-height*)
                              :flags '(:shown))
             (sdl2:with-renderer (renderer window :index -1 :flags '(:accelerated))
               (let ((blank-texture (sdl2:create-texture-from-surface renderer blank-surface))
                     (flag-texture (sdl2:create-texture-from-surface renderer flag-surface))
                     (mine-texture (sdl2:create-texture-from-surface renderer mine-surface))
                     (digit-textures (make-hash-table))
                     (game-over-texture (sdl2:create-texture-from-surface renderer game-over-surface)))
                 ;; Convert digit surfaces to textures
                 (maphash (lambda (key surface)
                            (setf (gethash key digit-textures)
                                  (sdl2:create-texture-from-surface renderer surface)))
                          digit-surfaces)
                 (unwind-protect
                      (game-loop window renderer blank-texture flag-texture mine-texture digit-textures game-over-texture)
                   ;; Cleanup textures
                   (sdl2:destroy-texture blank-texture)
                   (sdl2:destroy-texture flag-texture)
                   (sdl2:destroy-texture mine-texture)
                   (sdl2:destroy-texture game-over-texture)
                   (maphash (lambda (_key texture)
                              (declare (ignore _key))
                              (sdl2:destroy-texture texture))
                            digit-textures)))))))
      ;; Cleanup surfaces
      (when flag-surface (sdl2:free-surface flag-surface))
      (when blank-surface (sdl2:free-surface blank-surface))
      (when mine-surface (sdl2:free-surface mine-surface))
      (when game-over-surface (sdl2:free-surface game-over-surface))
      (maphash (lambda (_key surface)
                 (declare (ignore _key))
                 (sdl2:free-surface surface))
               digit-surfaces)))

In Minesweeper, if you click on a cell with no neighboring mines, all the neighboring cells are exposed. This will open up larger areas of the board. The AI did a good job of implementing this, but I was careful to specify that only the hidden cells should be exposed. Otherwise, the recursion would not bottom out because every cell is a neighbor of its neighbors.

(defun expose-neighbors (row col)
  "Recursively expose all hidden neighbors of a cell with zero neighboring mines."
  (loop for r from (max 0 (1- row)) to (min (1+ row) (1- *game-height*))
        do (loop for c from (max 0 (1- col)) to (min (1+ col) (1- *game-width*))
                 do (when (and (eql (aref *board* r c) +hidden+)) ;; Only expose hidden cells
                      (setf (aref *board* r c) +exposed+)
                      ;; If the neighbor also has zero mines, recursively expose its neighbors
                      (when (and (integerp (aref *board-content* r c))
                                 (= (aref *board-content* r c) 0))
                        (expose-neighbors r c))))))

We need a way to get the game back to the initial state.

(defun reset-game ()
  "Reset the game by reinitializing the board and setting the game state to playing."
  (initialize-board)
  (setf *game-state* +playing+))

The AI writes buggy code. Here is an example. It is trying figure out if the player has won the game. You can state the winning condition in couple of different ways.

  • All the cells that are not mines are exposed.
  • All the cells that are mines are flagged, all flagged cells contain mines.

This does't quite achieve either of these.

(defun check-win-condition ()
  "Check if the player has won the game."
  (let ((won t)) ;; Assume the player has won until proven otherwise
    (loop for row from 0 below *game-height*
          do (loop for col from 0 below *game-width*
                   do (let ((state (aref *board* row col))
                            (content (aref *board-content* row col)))
                        (when (and (not (eql state +exposed+)) ;; Cell is not exposed
                                   (not (or (eql state +flagged+) ;; Cell is not flagged
                                            (eql content :mine)))) ;; Cell does not contain a mine
                          (setf won nil)))))
    (when won
      (setf *game-state* +won+))))

create-game-over-surface prepares a surface with the words “Game Over” writ large.

(defun create-game-over-surface ()
  "Create a surface for the 'GAME OVER' splash screen using SDL2-TTF."
  (let ((font nil)
        (text-surface nil))
    (unwind-protect
         (progn
           ;; Load the font (adjust the path and size as needed)
           (setq font (sdl2-ttf:open-font (asdf:system-relative-pathname "vibe" "fonts/arial.ttf") 72))
           ;; Render the text "GAME OVER" in red
           (setq text-surface (sdl2-ttf:render-text-solid font "GAME OVER" 255 0 0 255)))
      ;; Cleanup
      (when font (sdl2-ttf:close-font font)))
    text-surface))

The main function initializes the SDL2 library and its auxiliar libraries along with unwind-protects to uninitialize when we leave the game. The AI was not permitted to change this code.

(defun main ()
  (sdl2:with-init (:video)
    (unwind-protect
         (progn
           (sdl2-image:init '(:png))
           (unwind-protect
                (progn
                  (sdl2-ttf:init)
                  (initialize))
             (sdl2-ttf:quit)))
      (sdl2-image:quit))))

If you step on a mine, it exposes the other mines.

(defun expose-all-mines ()
  "Expose all mines on the board."
  (loop for row from 0 below *game-height*
        do (loop for col from 0 below *game-width*
                 do (when (eql (aref *board-content* row col) :mine)
                      (setf (aref *board* row col) +exposed+)))))

Conclusion

This wasn't “vibe coding”. This was plain old coding, but filtered through an English language parser. It added an extra level of complexity. Not only did I have to think about what should be coded, I had to think about how to phrase it such that the AI would generate what I had in mind and not disturb the other code.

Whenever I tried to let go and “vibe”, the AI would generate some unworkable mess. Programming is a craft that requires training and discipline. No dumb pattern matcher (or sophisticated one) is going to replace it.

In languages other that Common Lisp, you might get further. Consider Java. It takes a page and half of boilerplate to specify the simplest first-class object. An AI can easily generate pages and pages of boilerplate and appear to be quite productive. But you've missed the point if you think that it is better to generate boilerplate automatically than to use abstractions to avoid it and a language that doesn't need it.

Saturday, May 25, 2024

ECS in CLOS

Object systems make a natural fit for the game programming domain, but over time people have found that the object-oriented model provided by their favorite language doesn't always fit the use case. So developers have come up with “entity-component systems” (ECS) of varying complexity to fill the gap.

The basic idea is that a game object, called an “entity”, contains or refers to a set of “components” that define its behavior. Entities are too varied to be captured by a single class hierarchy, so we abandon inheritance in favor of composition. An entity that can be displayed on the screen has a “sprite” component, an entity that can move has “position” and “velocity” components, an entity that you can attack has a “hitbox” component and a “health” component. A entity that can attack you has an “attackbox” component. You can play mix and match the components to customize the behavior of the entity. We don't have a hierachy of components because each component can be added more or less independently of the others.

An ECS is an alternative or an augmentation to the built-in object system of a language, but it is an admission that the built-in object is insufficient.

CLOS provides an elegent way to implement an ECS without abandoning CLOS's built-in object system. We define a component as a “mixin” class that can be inherited from using multiple inheritance. We define mixin classes for each component, and then we define entity classes that inherit from the mixin classes. We would define a “sprite” mixin class, a “position” mixin class, etc. So the class of enemy entities would inherit from “sprite”, “position”, “velocity”, “hitbox”, “health”, and “attackbox” classes. A trap entity would inherit from “sprite”, “position”, and “attackbox” classes. A container entity that you could smash open would inherit from “sprite”, “position”, and “hitbox” classes. Etc.

Mixin classes aren't intended to be instantiated on their own, but instead provide slots to the classes that inherits from them. Furthermore, methods can be specialized on mixin classes so that instances derived from the mixin will respond to the method. This allows you to inherit from a mixin providing the particular desired behavior. For example, the “health” mixin class would provide a slot containing the entity's health and a “damage” method to decrease the health. Any entity inheriting from the “health” mixin will react to the damage method. Mixin classes can provide functionality similar to interfaces.

Mixin classes are an exception to Liskov's Substitution Principle, but they are a useful exception. Entities that inherit from a mixin do not have a “is-a” relationship with the mixin, but rather a “has-behavior-of” relationship. An entity inheriting from the “health” mixin is not a “health”, but it has the “health” behavior.

One feature of an ECS is that you can dynamically change the components of an object. For example, once an enemy is defeated, you can remove the “health” and “attackbox” components and add a “corpse” component. Is CLOS you could accomplish this by changing the class of the entity object to a class that doesn't have those mixins.

Of course care must be taken or you will end up with CLOS “soup”. But if you are careful, CLOS can provide a powerful and flexible system for implementing an ECS.

Monday, May 6, 2024

Motion without Integration

A game where things move around has equations of motion that describe how objects move. We need to solve these to produce the locations of the objects as a function of time, and we have to do it in lock step real time. Fortunately, we usually don’t need highly realistic models or highly accurate results. Game phyiscs, while inspired by real world physics, can be crude approximations.

If the velocity of an object changes over time, we need to integrate the velocity to determine the position. This is typically done with forward Euler integration: the current velocity is multiplied by a small Δt and this is added to the current position. In other words, we assume the object moves linearly over the amount of time represented by Δt. If Δt is small enough, the linear segments of motion will approximate the actual curve of motion.

In a game, we use the game loop, which runs every few milliseconds, as our source of time. We subtract the current time from the previous time the game loop was run to obtain our Δt. We update each object’s state using forward Euler integration over Δt.

Our game loop keeps track of the last time it was run and subtracts that from the current time. It runs entity-step! on each entity in the game, passing in dticks.

(let ((start-tick (sdl2:get-ticks)))
  (let ((last-tick start-tick))
    (loop
      (let* ((tick (- (sdl2:get-ticks) start-tick))
             (dticks (- tick last-tick)))
        (map nil (lambda (entity)
                   (entity-step! entity dticks))
                 entities)
        (setq last-tick tick)))))

entity-step! performs our forward Euler integration:

(defun entity-step! (entity dticks)
  (incf (position entity) (* (velocity entity) dticks)))

Assuming the game loop runs reasonably frequently, the position of the entity will be a reasonable approximation of the integral of the velocity. If the game loop gets delayed for some reason, e.g. garbage collection, the corresponding increase in the value of dticks will make up for it.

But sometimes we have the fortune of having a closed form solution to the time integral. If this is the case, we can compute the entity’s state directly and we don’t need to integrate the state changes on every iteration of the game loop. Let me give two examples.

In the platformer game, there are potions that the player can take to restore his health. A potion appears as a vial that floats above the ground. A “bobbing” effect is achieved by changing the height above the ground in a time varying manner. Now we could implement this by having the game loop modify the y position of the potion on each iteration, but there is a closed form solution. We can compute the y position at any time by adding a constant base y position to a factor of the sine of the current time. This is easily done by specializing the get-y method on potions:

;;; Make potions bob up and down.
(defmethod get-y ((object potion))
  (+ (call-next-method)
     (* 5 (sin (* 2 pi (/ (sdl2:get-ticks) 1000))))))

call-next-method invokes the next most specific method — in this case, the get-y method of the entity class, which returns the base y position. We add a sine wave based on the current time.

This is only thing we need to modify to make a potion bob up and down. Values dependent on the y position, such as the attackbox, will bob up and down with the potion because it uses the get-y method to determine what the potion is.

A second example is cannonball motion. Cannonballs travel linearly away from the cannon at a constant velocity. Rather than stepping the cannonball by adding its velocity to its position on each update, we specialize the get-x method on cannonballs

(defmethod get-x ((cannonball cannonball))
  (+ (call-next-method)
     (* (get-speed cannonball)
        (- (sdl2:get-ticks) (get-start-tick cannonball)))))

If we specialize both the get-x and get-y methods we can easily get objects to trace out any desired parametric curve, like a Lissajous figure.

Saturday, May 4, 2024

Animation: Two Methods

Animated sprites are much cooler that static ones and really make your game come to life. They are pretty easy to implement, but there are a couple of ways to implement them, and I've seen several projects use the less optimal strategy.

The less optimal strategy is straightforward. We keep a time counter in the animated entity and increment it every time we update the entity. When the counter exceeds the amount of time for an animation frame, we advance to the next frame and reset the ticker.

(defclass entity ()
  ((animation-ticker :initform 0 :accessor animation-ticker)))

(defun entity-step! (entity dticks)
  (incf (animation-ticker entity) dticks)
  (when (> (animation-ticker entity) ticks-per-frame)
    (advance-to-next-frame! entity)
    (decf (animation-ticker entity) ticks-per-frame)))

Now this works, but the reason it is less optimal is that it involves maintaining time varying state in the entity. Recall that the game has two primary threads running: a render thread which runs 60 times a second and draws the game on the screen, and an game loop thread which runs maybe 200 times a second and updates the state of the entities in the game. The point of this is to separate and abstract the drawing of the game from the running of the mechanics of the game. By using this less optimal method, we involve the game loop thread in maintaining state that is used only by the render thead. To anthromorphize, the entity “knows” that it is animated and is taking an active role in keeping things moving.

A better way is to put the responsibility of animation solely within the render thread by having it select which animation frame to display when it draws the sprite. The sprite contains a vector of animation frames and a timestamp at which the animation was started. When redrawing the sprite, the elapsed time is computed by subtracting the start timestamp from the current time, and the frame to display is computed by dividing the elapsed time by the time per frame modulo the length of the frame vector.

(defclass animation ()
  ((start-tick :initform (get-ticks) :reader start-tick)
   (frames :initarg frames :reader frames)))

(defun display-animation! (animation)
   (let* ((elapsed-time (- (get-ticks) (start-tick animation)))
          (absolute-frame (floor elapsed-time ticks-per-frame))
          (frame (mod absolute-frame (length (frames animation)))))
     (display-frame! (svref (frames animation) frame))))

This way of doing it no longer needs time varying state, and we’ve abstracted the display of the animation from the handling of the entity’s state. The entity no longer has to “know” that it is animated or do anything about it. There no longer has to be communication between the game loop thread and the render thread on every animation frame. This could be important if the render thread is running on a different machine than the game loop thread. If the game loop thread lags (maybe because of garbage collection or entering the error handler), we still get smooth animation.